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Abstract—A major difficulty that plagues the practical use
of Slepian-Wolf (SW) coding (and distributed source coding in
general) is that the precise correlation among sources needs
to be known a priori. To resolve this problem, we propose
an adaptive asymmetric SW decoding scheme using particle
based belief propagation (PBP). We explain the adaptive scheme
for asymmetric setup in detail and then further extend it
to the non-asymmetric setup based on the code partitioning
approach. Moreover, we introduce a Metropolis-Hastings (MH)
algorithm in the resampling step, which efficiently decreases the
number of simulation iterations. We show through experiments
that the proposed algorithm can simultaneously reconstruct the
compressed sources and estimate the joint correlation among
sources. Further, comparing to the conventional SW decoder
based on standard belief propagation, the proposed approach can
achieve higher compression under varying correlation statistics.

Index Terms—Adaptive decoding, Distributed algorithms,
Source coding, Data compression

I. INTRODUCTION

Slepian-Wolf (SW) coding is a technique to losslessly
compress correlated remote sources separately and decompress
them jointly [1]. To the surprise of many researchers of their
time, Slepian and Wolf showed that it is possible to have
no loss in sum rate, even though only separate encoding is
allowed. Thus, at least in theory, it is possible to recover the
source losslessly at the base station even though the sum rate
is barely above the joint entropy of the sources.

Wyner is the first who realized that by taking computed
syndromes as the compressed sources, error-correcting parity
check codes can be used to implement SW coding [2]. The
approach was rediscovered and popularized by Pradhan et al.
more than two decades later [3]. Numerous channel coding
based SW coding schemes have been proposed [3], [4], [5].
Noticeably, by using efficient channel codes such as the Low-
Density Parity-Check (LDPC) codes, it is possible to compress
a joint binary source very closed to the SW limit (i.e., the joint
entropy) [6], [7]. However, the fundamental assumption is that
the correlation statistics needs to be known accurately a priori.

Actually in many real applications, such as a sensor net-
work which is widely used for environmental monitoring of
temperature, pressure and humidity, or real-time area video
surveillance, the correlation statistics among sensors cannot
be obtained easily. In general, the correlations among sensors
may vary over both space and time. Since the decoding
performance of distributed source coding (DSC) relies on the
knowledge of correlation very much, the design of an online

estimation scheme of correlation for sensor network becomes
a significant task both in theoretical study and practical appli-
cations.

In this paper, we propose an adaptive LDPC code based
SW decoder using particle based belief propagation (PBP) to
simultaneously reconstruct a compressed source and estimate
the joint correlation between the sources. Our proposed algo-
rithm works well for the sources which have a slowly changing
correlation and is carried out based on factor graph [8], [9],
which affords great flexibility in modeling our problems. We
show that the proposed algorithm no longer depends on the
initial estimation of the correlation parameters and offers
accurate real-time estimations of the parameters. For different
code rates, our algorithm shows a lower decoding error rate
(and thus a more efficient compression) than that of the
standard belief propagation (BP) algorithm.

Since the close relationship between SW coding and channel
coding, the proposed approach can also be used for channel
state estimation (for example, see our prior work in [10]).
Unlike in channel coding that channel state information can
be estimated with the help of a pilot signal, this pilot method
cannot be used for SW coding and DSC in general since
sources in DSC are specified by the problems themselves and
are not controllable by users.

The rest of the paper is structured as follows. Related
work will be discussed in Section II. The precise problem
formulation will be described in Section III. We will review the
standard BP in Section IV-A and describe the proposed PBP
in Section IV-B. The proposed PBP decoding for asymmetric
and non-asymmetric SW coding will then be explained in
Sections IV-C and IV-D, respectively. In Section V we present
simulation results, and we conclude in Section VI.

II. RELATED WORK

Correlation parameter estimation for LDPC-based SW cod-
ing is proposed in [11], [12], [13]. In [12], the residual
redundancies in LDPC syndromes are used to estimate the
crossover probability between two correlated binary sources
using Mean-Intrinsic-LLR. However, these algorithms [11],
[12] work only for highly correlated sources. In [13], the Ex-
pectation Maximization (EM) algorithm was used to estimate
the correlation between two sources in SW coding. However,
unlike our setup, the parameter is assumed to be constant and
does not change within the code block.
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Some other related works are based on rate-adaptive ap-
proaches, where an encoder transmits few syndrome or parity
bits to start with and gradually increases the number of
syndrome or parity bits if decoding fails [14]. However, this
is possible only when a feedback channel is allowed.

Comparing to the aforementioned prior works, we consider
a rather different problem where the decoder tries its best to
recover the source even when the correlation is unknown. As
a by-product, the correlation is accurately estimated (see our
prior work in [15]). This information is useful in applications
such as distributed video coding, where it can aid the estima-
tion of motion vectors [16].

Generally, the standard BP algorithm can only handle dis-
crete variables with small alphabet sizes. However, in many
problems, variables may have large alphabet sizes or may
even be continuous, e.g. a continuous correlation parameter
between two sources. In these situations, the standard BP
is not applicable. However, integrating particle methods into
BP provides a way for BP to handle continuous variables.
J. Dauwels et. al incorporated particle methods into message
passing [17], and also used it for phase estimation in channel
coding [18]. Moreover, other particle based message passing
algorithms [19], [20], are also studied for continuous variable
problems.

The main contribution of this paper is to propose the first
adaptive asymmetric and non-asymmetric SW coding schemes
that can perform online estimation of the correlation among
sources while decoding. Correlation estimation at the decoder
is essential for practical implementation of SW coding since
the encoders, which have direct access of the original sources,
cannot communicate to each other and thus cannot perform
correlation estimation.

III. PROBLEM FORMULATION

Let X and Y be two correlated binary sources (taking values
0 and 1) and the correlation between them be modeled by
a binary symmetric channel (BSC) with unknown crossover
probability p. Namely, X = Y ⊕ Z, where ⊕ is the bitwise
addition (“exclusive or ”) operation and

Z =
{

0, with probability 1− p,
1, with probability p.

(1)

Moreover, we assume that the crossover probability p may
drift over time but will not change too rapidly.

When only one of the two sources, let say X , is compressed
whereas the other source is taken as side information at the
decoder, we refer to this case as asymmetric SW coding.
When both sources are compressed, we refer to this as non-
asymmetric SW coding [21], [22]. Apparently, asymmetric
SW coding is a special case of non-asymmetric SW coding.
In either case, there is no loss comparing to joint encoding
under some mild conditions, and thus, the total rate required
in theory is H(X,Y ). In particular, for the asymmetric case,
since we expect H(Y ) bits per sample are needed to compress
the side information Y independently, the rate required for
compressing X is H(X, Y )−H(Y ) = H(X|Y ).

Throughout the paper, we use an upper case letter to
represent a random variable and the corresponding lower case

letter to indicate the realization of the variable. Bold letters are
reserved for vectors. We use factor graphs [8] to formulate our
algorithms. Using the usual convention, a variable node that
specifies an unknown is denoted by a circle and a factor node
that specifies the “correlation” among multiple variable nodes
is denoted by a square. The name factor graph comes from the
fact that the joint probability function can be expressed as the
multiple of the factor functions of the factor nodes. Moreover,
we use N(a) to represent the set of neighbors for a node a. For
a factor node a, we use xa to indicate all variables connecting
to a. That is, xa = (xi|i ∈ N(a)).

IV. APPLICATION OF PARTICLE BASED BELIEF
PROPAGATION ALGORITHM IN SW CODING

A. Review of Belief Propagation Algorithm

The BP algorithm is an approximate technique for comput-
ing marginal probabilities by exchanging the message between
neighboring nodes. Denote ma→i (xi) as the message sent
from a factor node a to a variable node i, and mi→a (xi) as the
message sent from a variable node i to a factor node a. Loosely
speaking, ma→i (xi) and mi→a (xi) can be interpreted as the
beliefs of node i taking the value xi transmitting from node a
to i and from node i to a, respectively. The message updating
rules can be expressed as follows:

mi→a (xi) ∝
∏

c∈N(i)\a
mc→i (xi) (2)

and

ma→i (xi) ∝
∑

xa\xi


fa (xa)

∏

j∈N(a)\i
mj→a (xj)


, (3)

where N (i) \a denotes the set of all neighbors of node i
excluding node a; fa is the factor function for factor node
a;

∑
xa\xi

denotes a sum over all the variables in xa that

are arguments of fa except xi. Moreover, the BP algorithm
approximates the belief of node i taking xi as

bi (xi) ∝
∏

a∈N(i)

ma→i (xi). (4)

B. Particle based belief propagation algorithm

In the standard BP algorithm [8], (3) is generally intractable
when variables are continuous or the alphabet sizes of vari-
ables are large, since the summation in (3) will have infinite
number of terms. Thus, we introduce a PBP algorithm to solve
this problem by combining BP with particle methods. The key
idea of PBP is to model each continuous variable (or variable
with large alphabet sizes) with K number of particles with
associated weights, which just corresponds to K number of
labels in the standard BP. Note that in standard BP only the
belief of each label will be updated after each iteration, but in
PBP both the value (i.e., location) of each label (i.e., particle)
and the corresponding belief of each label will be updated after
each iteration. Please note that these changes do not affect the
sum-product message update rules described in the standard
BP algorithm.
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By introducing a distribution Wj(xj) (corresponding to the
particle weights), we can rewrite (3) as an expectation form,
which can be considered as importance-sampling transform of
(3), as following1

ma→i (xi) ∝
∑

xj∈χj

fa (xj , xi)
mj→a (xj)
Wj(xj)

Wj(xj)

∝ E

[
fa (xj , xi)

mj→a (xj)
Wj(xj)

]
,

(5)

where E is the expectation with respect to the distribution
Wj(xj). Then, the above message can be approximated by a
list of K particles as

m̂a→i

(
x

(k)
i

)
∝ 1

K

K∑

l′=1

fa

(
x

(l′)
j , x

(k)
i

) m̂j→a

(
x

(l′)
j

)

Wj(x
(l′)
j )

. (6)

Moreover, the distribution Wj(xj) can be chosen from the
marginal distribution of variable xj , which corresponds to the
belief of this variable (see (4)). Additionally, locations and
corresponding weights of particles have to be adjusted over
time. This is achieved by using systematic resampling [23]
and Metropolis-Hastings (MH) [24] random walk perturbation
after each message update. The MH algorithm efficiently
reduces the number of simulation iterations by half when
comparing to the standard Gaussian random walk. In the
following, the workflow of the PBP algorithm is described.

1) First, the weight of a particle x
(k)
i will be computed

as b(x(k)
i ), the belief of x

(k)
i from standard BP, where

k = 1, 2, · · · ,K.
2) Then K new samples, x̃

(1)
i , · · · , x̃

(K)
i , will be drawn

with probabilities proportional to b(x(k)
i ) using system-

atic resampling [23]. As a result, some x
(k)
i that have

small probabilities will be likely to be discarded whereas
those with high probability will be repeatedly drawn.

3) To maintain the diversity of the particles, the particle
locations will be perturbed by an MH [24] based Gaus-
sian random walk, which consists of two basic stages.
First, let the proposed new K particles at each iteration
be x̂

(k)
i = x̃

(k)
i + Zr, that is the current value plus

a Gaussian random variable Zr ∼ N(0, σ2
r). Second,

decide whether the proposed values of new particles
are rejected or retained by computing the acceptance

probability a{x̂(k)
i , x̃

(k)
i } = min{1,

p
(

x̂
(k)
i

)

p
(

x̃
(k)
i

)}, where

p
(

x̂
(k)
i

)

p
(

x̃
(k)
i

) is the ratio between the proposed particle value

and the previous particle value. When the proposed value
has a higher posterior probability than the current value
x̃

(k)
i , it is always accepted; otherwise, it is accepted with

probability a.
4) Based on the new particles, update messages and beliefs

using standard BP.
5) Iterate steps 2 to 4 unless the maximum number of

iterations is reached or other exit condition is satisfied.
1For ease exposition, we consider a factor function fa with only two

variables in our analysis. It is easy to extend the analysis to a factor function
with more variables.
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Fig. 1. Factor graph representation of the proposed PBP algorithm, where the
superscripts of f indicate the factor nodes in Regions I, II, III, respectively.

C. Particle based BP for Asymmetric SW Coding

Our proposed approach is based on the syndrome based
approach using LDPC code [6] as shown in Fig. 1 (see
Regions II and III). At the encoder, a block of N input
bits, x1, x2, · · · , xN , is compressed into M syndrome bits,
s1, s2, · · · , sM , thus resulting in M : N compression. The
factor nodes f III

l , l = 1, 2, · · · ,M as shown in Region III of
Fig. 1 take into account the constraint imposed by the received
syndrome bits. For a factor node f III

l in Region III, we define
the corresponding factor function f III

l (xf III
l

), as

f III
l (xf III

l
) =

{
1, If sl ⊕

⊕
i∈N(f III

l ) xi = 0,

0, otherwise,
(7)

where N(f III
l ) denotes the set of neighbors of factor node

f III
l ,

⊕
i∈N(f III

l ) represents the bitwise sum of all elements
xi with i ∈ N(f III

l ), and for a factor node f III
l , xf III

l
indicate

all variables connecting to f III
l .

For the conventional SW coding, the correlation between a
pair of sources, xi and yi, is handled by a correlation factor
node f II

i , i = 1, 2, · · · , N (see Region II of Fig. 1), where the
corresponding factor function f II

i (yi, xi, p) is defined as

f II
i (yi, xi, p) =

{
1− p, If xi = yi,
p, otherwise. (8)

With the variable and factor nodes defined and in place,
one can estimate the values of x using the BP algorithm.
While the source X can be compressed very closely to the SW
limit H(X|Y ) in the classic BP approach [6], the crossover
probability p is assumed to be constant and known a priori.
The main contribution of our approach is to relax these
constraints. Namely, we assume that p is unknown and varies
slowly over time. To model this, we connect the factor node
f II

i to a variable pi′ , where pi′ is now a variable instead of a
constant. Thus, the factor function f II

i (yi, xi, p) in (8) will be
updated to

f II
i (yi, xi, pi′) =

{
1− pi′ , if xi = yi,
pi′ , otherwise. (9)
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We call the number of correlation factor nodes connecting to
each pi′ the connection ratio, which is equal to three in Fig.
1. The higher the connection ratio, the simpler the model and
the fewer the number of hidden parameters 2.

Since we assume that p only varies slowly over time, the
corresponding probability of any two variable nodes of pi′

and pi′+1 in Region I, should be close. This characteristic
is captured by the p-factor nodes f I

1,2, f
I
2,3, · · · , f I

N ′−1,N ′

as shown in Region I of Fig. 1, where a p-factor function
f I

i′,i′+1(pi′ , pi′+1) is defined as

f I
i′,i′+1(pi′ , pi′+1) = exp

(
− (pi′ − pi′+1)2

λi′,i′+1

)
, (10)

where the estimation of λi′,i′+1 will be described in Remark
1.

With the factor functions defined in (7), (9), and (10), it may
appear that the BP algorithm can be directly applied. However,
p1, p2, · · · , pN ′ are continuous and cannot be handled by
standard BP (see also Section IV-B) Nevertheless, by applying
PBP, we are able to handle even continuous variables.

As mentioned in Section IV-B, PBP handles continuous
variables by modeling each pi′ in Region I with K particles
p
(1)
i′ , . . . , p

(K)
i′ and adjusting particle locations and weights ac-

cording systematic resampling and MH random walk. Region
II plays the role of connecting standard BP (Region III) and
PBP (Region I) to exchange information between each other.
The factor node message update from Region II to Region I
can be written as

mf II
i →i′(p

(k)
i′ ) ∝

∑

xi∈{0,1}
f II

i

(
yi, xi, p

(k)
i′

)
mi→f II

i
(xi) , (11)

while the factor node message update from Region II to Region
III can be written as

mf II
i →i(xi) ∝ 1

K

K∑

k=1

f II
i

(
yi, xi, p

(k)
i′

) mi′→f II
i

(
p
(k)
i′

)

Wi′(p
(k)
i′ )

, (12)

where f II
i (yi, xi, p

(k)
i′ ) =

{
1− p

(k)
i′ , if xi = yi

p
(k)
i′ , otherwise

, and

Wi′(p
(k)
i′ ) corresponds to the belief of particle p

(k)
i′ . On one

hand, we can see that the message mi→f II
i
(xi) from Region

III is used to update the message mf II
i →i′(p

(k)
i′ ) to Region I.

Furthermore, the updated message in Region I can be used
to update the value of each particle according to the belief
b
(
pk

i′
) ∝ ∏

f II
i ∈N(i′) mf II

i →i′

(
p
(k)
i′

)
. On the other hand, for

Region III, not only the message from mi′→f II
i

(
p
(k)
i′

)
is used

to update the message mf II
i →i(xi), but also, more importantly,

the updated value of each particle p
(k)
i′ , which corresponds to

the crossover probability, has played a role for updating the
message mf II

i →i(xi). Actually, updating message mf II
i →i(xi)

equals to the update of estimate of source correlation. Finally,
by performing the aforementioned scheme iteratively, the

2To estimate a constant correlation as in other estimation algorithms [11],
[12], [13], one can set the connection ratio equal to the code length N .
The complexity of the PBP algorithm would be competitive with other
aforementioned estimation algorithms in this degenerated case.

source decoding and correlation estimation can be done
simultaneously.

Remark 1. Generally, λi′,i′+1 is taken as a predetermined
value to simplify the problem. It may be beneficial to estimate
λi′,i′+1 for each factor node f I

i′,i′+1 in Region I to improve de-
coding performance. In our study, we utilize a similar method
used for correlation estimation (see section IV-B) to estimate
λi′,i′+1 by sampling K particles λ

(1)
i′,i′+1, · · · , λ

(K)
i′,i′+1, for each

factor node f I
i′,i′+1. Here, we suppose that the change in

λi′,i′+1 has the same trend as the difference between the
averages of the two p connecting to λi′,i′+1. That is, define
∆pi′,i′+1 = |p̄i′ − p̄i′+1|, where p̄i′ = 1

K

∑K
k=1 p

(k)
i′ is the

mean location of all the particles in variable node of pi′ .
A larger ∆pi′,i′+1 means a greater probability of λk

i′,i′+1 to
take a larger value. To increase the stability and decrease
computational overhead, one can perform λi′,i′+1 estimation
once after several number of PBP iterations, whereas pi′

estimation is performed at each iteration as described in
Section IV-B.

Remark 2. The complexity of BP increases linearly with the
degree of a variable node but exponentially with the degree
of a factor node. However, we can easily incorporate the
“method” of passing log-likelihood ratios Lai , logma→i(0)

ma→i(1)
instead of probabilities as messages to reduce the complexity
for the factor node updates in Region III [25]. The resulting
complexity will be linear with respect to code length [26].
Note that the same method cannot be used in general for factor
nodes in Regions I and II since the method can only be used
to variables with alphabet size of two and there are generally
more than two labels for the variable there. For example, we
generally use more than two particles to represent pi′ (i.e.,
each pi′ can take more than two values). However, this does
not have significant impact to the complexity of the overall
algorithm since the node degrees of the factor nodes in Regions
I and II are only two as shown in Fig. 1.

D. Particle based BP for Non-asymmetric SW Coding

Different attempts have been made to implement non-
asymmetric SW coding, which includes: time-sharing, source
splitting [5], and code partitioning [4], [7]. However, like all
aforementioned work, they assume the correlation statistics
between the two sources is constant and known a priori.

The code partitioning approach effectively converts a SW
coding problem into a channel coding problem. In [7], the code
partitioning approach is implemented using irregular repeated
accumulat (IRA) codes [27], a special case of LDPC codes.
Being a form of LDPC codes, the IRA based SW coding can
be decoded using BP, and the proposed PBP method can be
directly applied. For completeness, a brief description about
code partitioning approach is given as follows.

Let H = [P |I] = [P1P2|I] be the parity check matrix of
a systematic linear block code, where the widths of P1 and
P2 are N1 and N2, respectively, and I is an identity matrix
of size M ×M . Therefore, H is of size M ×N , where N =
N1 + N2 + M .
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Fig. 2. Estimation of crossover probabilities for sinusoidal changing
correlations.

Now, we can partition the code into two subcodes with
parity check matrices H1 =

[
I 0 0
0 P2 I

]
and H2 =

[
0 I 0

P1 0 I

]
.

Length-N blocks drawn separately from the two correlated
sources, x and y, will be compressed to u = H1x and
v = H2y, respectively. For the ease of explanation, let us
split x into x1, x2 and x3, where their lengths are N1, N2

and M , respectively, and split u into u1 and u2 with lengths
N1 and M . Therefore, we have u1 = x1 and u2 = P2x2+x3.
Similarly, y is split into y1, y2 and y3, and v is split into v1

and v2. This gives us v1 = y2 and v2 = P1y1 + y3.
At the decoder, the received bits of u and v will be

rearranged and padded with zeros into t1 =



u1

0N2×1
u2


 and t2 =



0N1×1

v1

v2


. Then, it can be easily verified that t′ , t1 + t2 +

x + y =
[

I
P

] [
x2

y1

]
. Note that

[
I
P

]
is actually a generator matrix

of the original code. Thus, t′ = t1 + t2 + x + y is the
codeword encoded from the message

[
x2

y1

]
. We can rewrite t′ as

t′ = t+z, where t = t1 +t2 and z = x+y. Therefore, given
t (corresponding to the side information used in asymmetric
case), the decoder can recover t′ by taking t as a corrupted
codeword passing through a channel with noise z. Given x2

and y1 (obtained from the decoded t′), x3 and y3 can be
solved accordingly from u2 = P2x2+x3 and v2 = P1y1+y3,
whereas x1 and y2 can be read out from u1 and v1 directly. Fi-
nally, by combining all the decoded information, both sources
x and y can be recovered. According to the aforementioned
description, we can see the factor graphs used for the non-
asymmetric case are the same as the asymmetric case, except
replacing the side information y by t, the decoding codeword
x by t′ and setting all the syndrome bits equal to 0. Then
the inference problem for non-asymmetric case can be solved
similarly as the asymmetric problem. More details about the
implementation of non-asymmetric setup can be found in [28].

V. EXPERIMENTAL RESULTS

We first studied the asymmetric case, where SW codes were
randomly generated by a 6000 × 10240 parity check matrix
and the variable node degree is equal to 3. Moreover, 16
particles were assigned to each variable node in Region I.
For the random walk step, we assumed σ2

r = 0.0001. The
following results were obtained by averaging the estimated
crossover probability of 200 different codewords. Fig. 2 shows
the estimated results of a sinusoidally changing correlation,
where the crossover probability p changes sinusoidally from
0.05 to 0.3 for each input codeword bit. The results verified
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Fig. 3. Decoding bit error rate for a sinusoidal changing correlation.

that our proposed algorithm can generate a good estimation of
a complexly changing correlation.

Next we analyzed how different settings of parameters
effected the decoding performance of our proposed PBP
algorithms. The following performance results were obtained
by averaging 10000 independent simulations, where the code
length was equal to 10240. Moreover, the theoretical capacity

is calculated according to the equation C = 1
N

N∑
i=1

1−H(pi),

where H(pi) = −pi log(pi) − (1 − pi)log(1 − pi) and
N = 10240. The value of crossover probability pi changed
sinusoidally from 0.05 to 0.3 in the BSC. The number of
particles was also equal to 16.

In Fig. 3, we compared the decoding performance between
our proposed PBP algorithm and standard BP algorithm by
using different initial estimations of p, namely, p = 0.05, 0.15
or 0.3. We can see that the gain was relatively small when the
initial estimation is close to the true value of the crossover
probability (e.g. p = 0.15, which was roughly equal to the
mean of the time changing crossover probability). However,
when the initial estimation was far away from the true value,
the observed gain was significant. In comparison, we can see
that our PBP algorithm is not sensitive to the initial estimation
of p, since the results showed that all the PBP simulations
yielded similar decoding performance.

We then proceeded to study the non-asymmetric case. We
tried to compare the performance of our adaptive decoding
algorithm with conventional IRA decoding. We fixed the code
rates for both X and Y to be 0.75. We then compared decoding
performance of the two schemes while varying the correlation
parameter p. Unlike the first case, we let p to be a constant
over all samples. Initial estimations of p were set 0.1 and 0.2.
As shown in Fig. 4 (a), the gain was relatively small when
the estimation p was not too far from its true value. However,
when the estimation deviated significantly from its true value,
the observed gain was substantial.

Finally, we compared the two algorithms for the case
when there was some minor fluctuation in p, where p varies
sinusoidally from 0.05 to 0.07. We approximated the sum rate
where lossless compression was achieved when the probability
of error fell below 10−4. The result is shown in Fig. 4 (b).
We can see that the gain is rather significant even when the
fluctuation of p is rather small.

VI. CONCLUSION

We proposed an adaptive decoding scheme for SW coding
using particle based BP. The scheme has been tested for
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Fig. 4. (a) Change of BER as the correlation parameter p (and thus H(X, Y ))
varies. Code length (N) = 10, 000 and the rate pair is (0.75, 0.75). The
initial estimations of p are 0.1 and 0.2. (b) Comparing our adaptive decoding
algorithm and standard BP with the theoretical limits of SW code, where the
correlation is change sinusoidally with max value 0.07 and min value 0.05.

both asymmetric SW coding and non-asymmetric SW coding
(with the latter case is attained by incorporating the code
partitioning idea). From our experiments, a precise estimation
of correlation between the two sources using our adaptive
decoding algorithm has been observed. Thus, the decoding
performance of our algorithm is no longer sensitive to the
initial estimation of the correlation parameter p. Moreover,
we have observed a significant gain of our algorithm over the
standard BP algorithm even when there is a slight fluctuation
of the correlation among sources.
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